materials

contents

Polyethylene as a Material	3
Low Density PE	3
Linear Low Density PE	3
Medium Density PE	3
High Density PE	3
Properties of PE	4
Stress Regression Curves	5
Material Classification and Stress Regression	5
Hydrostatic Design Stress	5
Chemical Resistance Classification	6
Introduction	6
Important Information	6
Classes of Chemical Resistance	6
Abbreviations	6
Chemical Attack on Thermoplastics & Elastomers	7
Factors Affecting Chemical Resistance	7
Chemical Resistance of Polyethylene	7
General Effect of Chemicals on Polyethylene Pipe	7
Chemical Resistance of Joints	8
General Guide for Chemical Resistance of Various Elastomers (Rubber Rings)	8
Chemical Resistance Tables	9-25
Material Performance Aspects	26
Abrasion Resistance	26
Weathering	27
Permeation	27
Food Contact Applications	27
Biological Resistance	27

PE Pipe Systems PE Pipe Systems

Limitation of Liability

This manual has been compiled by Vinidex Pty Limited ("the Company") to promote better understanding of the technical aspects of the Company's products to assist users in obtaining from them the best possible performance.

The manual is supplied subject to acknowledgement of the following conditions:

- The manual is protected by Copyright and may not be copied or reproduced in any form or by any means in whole or in part without prior consent in writing by the Company.
- Product specifications, usage data and advisory information may change from time to time with advances in research and field experience. The Company reserves the right to make such changes at any time without notice.
- Correct usage of the Company's products involves engineering judgements which cannot be properly made without full knowledge of all the conditions pertaining to each specific installation. The Company expressly disclaims all and any liability to any person whether supplied with this publication or not in respect of anything and of the consequences of anything done or omitted to be done by any such person in reliance whether whole or partial upon the whole or any part of the contents of this publication.
- No offer to trade, nor any conditions of trading, are expressed or implied by the issue of content of this manual. Nothing herein shall override the Company's Conditions of Sale, which may be obtained from the Registered Office or any Sales Office of the Company.
- This manual is and shall remain the property of the Company, and shall be surrendered on demand to the Company.
- Information supplied in this manual does not override a job specification, where such conflict arises, consult the authority supervising the job.

© Copyright Vinidex Pty Limited ABN 42 000 664 942

Irrigation Warehouse

Polyethylene as a Material

Polyethylene materials are manufactured from natural gas derived feedstocks by two basic polymerisation processes.

The low pressure polymerisation process results in linear polymer chains with short side branches. Density modifications to the resultant polymer are made by varying the amount of comonomer used with the ethylene during the polymerisation process.

The high pressure polymerisation process results in polymer chains with more highly developed side branches. Density modifications to the resultant polymer are made by varying the temperatures and pressures used during the polymerisation process.

The physical properties of PE materials are specific to each grade or type, and can be modified by both variations in density, and in the molecular weight distribution. General physical properties are listed in Table 2.1.

A large number of grades of PE materials are used in pipe and fittings systems and the specific properties are tailored for the particular application. Advice can be obtained from Vinidex as to the most effective choice for each installation. The most general types of PE materials are as follows:

Low Density PE (LDPE)

LDPE has a highly branched chain structure with a combination of small and large side chains.

The density of LDPE ranges between 910-940 kg/m³ and LDPE exhibits high flexibility and retention of properties at low temperatures.

The main use for LDPE in piping is in the micro irrigation or dripper tube applications with sizes up to 32 mm diameter.

LDPE materials may be modified with elastomers (rubber modified) to improve Environmental Stress Crack Resistance (ESCR) values in micro irrigation applications where pipes operate in exposed environments whilst carrying agricultural chemicals.

Linear Low Density PE (LLDPE)

LLDPE has a chain structure with little side branching and the resultant narrower molecular weight distribution results in improved ESCR and tensile properties when compared to LDPE materials.

LLDPE materials may be used either as a single polymer or as a blend with LDPE, in micro irrigation applications to take advantage of the material flexibility.

Medium Density PE (MDPE)

MDPE base resin is manufactured using a low pressure polymerisation process, and the limited side branch chain structure results in a material density range of 930-940 kg/m³.

MDPE materials qualify as PE63 and PE80B in accordance with AS/NZS 4131.

MDPE materials provide improved pipe properties when compared to the earlier high density materials used in pipes. These properties include life, flexibility, ductility, slow crack growth resistance and crack propagation resistance.

These properties of the MDPE materials are utilised in gas reticulation, small diameter pipe coils, travelling irrigator coils and water reticulation applications.

High Density PE (HDPE)

HDPE base resins are manufactured by a low pressure process, resulting in a chain structure with small side branches and a material density range of 930-960 kg/m³.

HDPE materials qualify as PE80C and PE100 in accordance with AS/NZS 4131. HDPE materials are widely used in both pressure and non pressure applications such as water supply, liners, drains, outfalls, and sewers in pipe sizes up to 1000 mm diameter. The increased stiffness of HDPE is used to advantage in such applications as electrical and communications conduits, sub-soil drainage, sewer and stormwater.

Warehou

materials)

Table 2.1 Properties of Polyethylene

Typical values of the most commonly used properties

Property	Test Method	PE80B	PE80C	PE100
Density kg/m ³	IS01183D, IS01872-2B	950	960	960
Tensile Yield Strength MPa	IS0527	20	21	23
Elongation at Yield %	IS0527	10	8	8
Tensile Break Strength MPa	IS0527	27	33	37
Elongation at Break %	IS0527	> 800	> 600	> 600
Tensile Modulus MPa Short term	ref. AS/NZS 2566	700	750	950
Long term	ref. AS/NZS 2566	200	210	260
Hardness Shore D	DIN 53505	59	60	64
Notched Impact Strength kJ/m ² (23°C)	ISO179/1 e A	35	24	26
Melt Flow Rate 190/5, g/10min	IS01133	0.7 - 1.0	0.4 - 0.5	0.3 - 0.5
Thermal Expansion x 10 ⁻⁴ /C	DIN 53752	2.4	1.8	2.4
Thermal Conductivity W/m.k (20°C)	DIN 52612	0.43	0.43	0.40
Crystalline Melt Point °C	DIN 53736	125	130	132
Dielectric Strength kV/mm	DIN 53481	70	53	53
Surface Resistivity Ohm	DIN 53482	> 10 ¹⁵	> 10 ¹⁵	> 10 ¹⁵
Volume Resistivity Ohm.cm	DIN 53482	> 10 ¹⁵	> 10 ¹⁵	> 10 ¹⁵
Poissons Ratio µ		.4	.4	.4

Irrigation Warehouse Group Pty Ltd Irrigation Warehouse Group ALT Irrigation Warehouse Com.au Irrigation Warehouse Group ALT Su

Stress Regression Curves

To design a pipe with the required thickness for a given pressure and diameter, for example, the following formula applies:

 σ = MRS/C

$$\sigma = p(D-e)/2e$$

where

 σ = wall tension, dimension stress

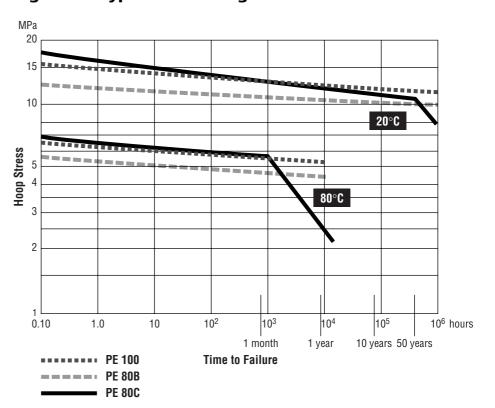
MRS= Minimum Required Strength

- C = safety factor, typically 1.25 for water
- p = internal pipe pressure
- D = external pipe diameter
- e = pipe thickness

Material Classification and Stress Regression

Hydrostatic Design Stress

The allowable hydrostatic design stress is based on the Minimum Required Strength (MRS) which is in turn obtained from stress regression curves.


Stress regression curves are developed from short and long term pressure testing of pipe specimens.

As there is a linear relationship between the logarithm of the applied stress and the logarithm of time to failure, the test points are plotted and extrapolated to an arbitrarily chosen 50 year point. In some cases, especially at higher temperatures, there is a sudden change in slope of the regression curve, known as the 'knee'. The knee, as illustrated in Figure 2.1 represents the transition from ductile failure mode to brittle failure mode.

The relationship between the curves for different test temperatures enables prediction of the position of the knee at 20°C, based on a known position at elevated temperature – see Figure 2.1. This in turn enables prediction of ductile life at 20°C. The value of the predicted hoop stress (97.5% lower confidence limit) at the 50 year point, is used to determine the MRS of the material, i.e. 6.3, 8.0 or 10.0 MPa.

The hydrostatic design stress is obtained by application of a factor, not less than 1.25, to the MRS value.

It is emphasised that stress regression curves form a design basis only, and do not predict system life.

Figure 2.1 Typical Stress Regression Curves

Chemical Resistance Classification

Introduction

The following section tabulates the classes of chemical resistance of thermoplastic and elastomeric materials most commonly used in pipe and fittings systems for the conveyance of liquids and gases.

It is generally known that pipes and fittings in thermoplastic material are widely used in industries where conveyance of highly corrosive liquids and gases requires high-quality construction materials, featuring excellent corrosion resistance.

Stainless steel, coated steel, glass and ceramic materials can often be advantageously replaced by thermoplastic materials, ensuring safety, reliability and economic benefits under similar operating conditions.

Important Information

The listed data are based on results of immersion tests on specimens, in the absence of any applied stress. In certain circumstances, where the preliminary classification indicates high or limited resistance, it may be necessary to conduct further tests to assess the behaviour of pipes and fittings under internal pressure or other stresses.

Variations in the analysis of the chemical compounds as well as in the operating conditions (pressure and temperature) can significantly modify the actual chemical resistance of the materials in comparison with this chart's indicated value.

It should be stressed that these ratings are intended only as a guide to be used for initial information on the material to be selected. They may not cover the particular application under consideration and the effects of altered temperatures or concentrations may need to be evaluated by testing under specific conditions. No guarantee can be given in respect of the listed data. Vinidex reserves the right to make any modification whatsoever, based upon further research and experiences.

Three Different Classes of Chemical Resistance are Conventionally Used in this Guide.

Class 1: High Resistance (Corrosion proof)

All materials belonging to this class are completely or almost completely corrosion proof against the conveyed fluid according to the specified operating conditions.

Class 2: Limited Resistance

The materials belonging to this class are partially attacked by the conveyed chemical compound. The average life of the material is therefore shorter, and it is advisable to use a higher safety factor than the one adopted for Class 1 materials.

Class 3: No Resistance

All materials belonging to this class are subject to corrosion by the conveyed fluid and they should therefore not be used.

The absence of any class indication means that no data is available concerning the chemical resistance of the material in respect of the conveyed fluid.

Abbreviations

Code Denomination

uPVC	unplasticized polyvinyl chloride
PE	polyethylene PE63 PE80 PE100

- PP polypropylene
- PVDF polyvinylidene fluoride
- PVC-C chlorinated polyvinyl chloride
- NBR butadiene-acryInitrile rubber
- EPM ethylene-propylene copolymer
- FPM vinylidene fluoride copolymer

Notes

- nd undefined concentration
- deb weak concentration
- comm commercial solution
- diluted solution dil

materials

Chemical Attack on Thermoplastics & Elastomers

Chemicals that attack polymers do so at differing rates and in differing ways. There are two general types of chemical attack on polymer:

- Swelling of the polymer occurs but the polymer returns to its original condition if the chemical is removed. However, if the polymer has a compounding ingredient that is soluble in the chemical, the properties of the polymer may be changed because of the removal of this ingredient and the chemical itself will be contaminated.
- 2 The base resin or polymer molecules are changed by crosslinking, oxidation, substitution reactions or chain scission. In these situations the polymer cannot be restored by the removal of the chemical. Examples of this type of attack on PVC are aqua regia at 200°C and wet chlorine gas.

Factors Affecting Chemical Resistance

A number of factors can affect the rate and type of chemical attack that may occur. These are:

Concentration:

In general, the rate of attack increases with concentration, but in many cases there are threshold levels below which no significant chemical effect will be noted.

Temperature:

As with all processes, rate of attack increases as temperature rises. Again, threshold temperatures may exist.

Period of Contact:

In many cases rates of attack are slow and of significance only with sustained contact.

Stress:

Some polymers under stress can undergo higher rates of attack. In general PVC is considered relatively insensitive to "stress corrosion".

Chemical Resistance Of Polyethylene

The outstanding resistance of Vinidex polyethylene systems to a variety of chemical reagents, allows their use in a wide range of chemical processes.

Chemical resistance of polyethylene is due to the non polar or paraffinic nature of the material and is a function of reagent concentration and temperature. Some attack may occur under specific conditions however, use of Vinidex polyethylene systems provides a cost effective solution when the behaviour of polyethylene is compared to that of alternative materials.

Where rubber modified LDPE blends are used for improved ESCR properties in irrigation applications, the effect of speciality chemicals may require evaluation eg. micro-irrigation tube/ dripper tube.

General Effect of Chemicals on Polyethylene Pipe:

Resistant:

Water, solutions of inorganic salts, weak acids, strong organic acids, strong alkaline solutions, aliphatic hydrocarbons.

Has adequate resistance:

Strong acids, hydrofluoric acids, fats and oils.

Has limited resistance:

Lower alcohols, esters, ketones, ethers, aromatic hydrocarbons, mineral oil.

In most cases non-resistant:

Light naphtha, fuel mixture.

Completely non-resistant.

Unsaturated chlorinated hydrocarbons, turpentineare hypipe 61

Chemical Resistance of Joints

Fusion Joints (PE)

Fusion joints include those made by butt fusion, electrofusion and socket fusion and these types will have the same chemical resistance as listed for PE.

Rubber Ring Joints (Elastomers)

Chemical resistance of Rubber Ring Joints may be assessed by reference to the accompanying Table 2.2 General Guide for Chemical Resistance of Various Elastomers as well as the pipe material guide.

Other Fittings

PE pipe systems often employ fittings and accessories manufactured from materials dissimilar to the pipe material, such as brass, aluminium, iron and polypropylene. In such cases, the designer should refer to the appropriate manufacturer for advice on the chemical resistance of these materials.

Table 2.2 General Guide for Chemical Resistance ofVarious Elastomers (Rubber Rings)

Material & Designation	Generally resistant to	Generally not resistant to			
Natural Rubber NR	Most Moderate Chemicals Wet or Dry, Organic Acids, Alcohols, Ketones, Aldehydes	Ozone, Strong Acids, Fats, Oils, Greases, Most Hydrocarbons			
Styrene Butadiene Rubber SBR	As for Natural Rubber	As for Natural Rubber			
Polychloropene (Neoprene) CR	Moderate Chemicals & Acids, Ozone, Fats, Greases, Many Oils and Solvents	Strong Oxidising Acids, Esters, Ketones, Chlorinated, Aromatic and Nitro Hydrocarbons			
Ethylene Propylene Diene Monomer EPDM	Animal & Vegetable Oils, Ozone, Strong & Oxidising Chemicals	Mineral Oils & Solvents, Aromatic Hydrocarbons			
Nitrile Rubber NBR	Many Hydrocarbons, Fats, Oils, Greases, Hydraulic Fluids, Chemicals	Ozone, Ketones, Esters, Aldehydes, Chlorinated & Nitro Hydrocarbons			

Source: Uni-Bell PVC Pipe Association - Handbook of PVC Pipe 1982

Note:

The chemical performance of elastomers is influenced by a number of factors including:

- temperature of service
- · conditions of service
- · grade of polymer
- the compound specified

Contact the Vinidex technical department for further information, if required.

Irrigation WE

teri

m

a

a l s

Chemical	Formula	Conc. (%) Te	mp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
ACETALDEHYDE	CH ₃ CHO	100	25	3	1	2	3	3	3	1	2
	J		60	3	2			3			
			100					3			
- AQUEOUS SOLUTIO	N	40	25 60	3 3	1 2	1 2	1	1	3 3	1	1
			100	5	2	۷	1		0		2
ACETIC ACID	CH ₃ COOH	≤25	25	1	1	1	1	1	3	1	1
			60	2	1	1	1	1	3	3	
		30	100 25	1	1	1	1	1	2	1	1
		30	60	2	1	1	1	I	2	3	
			100	_		1	1	2		Ŭ	
		60	25	1	1	1	1	1	2		1
			60	2	1	1	1	0	3	0	
		80	100 25	1	2	2 1	2 1	2	3	3 2	1
		00	60	2	3	3	1	1	3	3	
			100		-	3	2	2	3	3	2
- GLACIAL		100	25	2	1	1	1	2	3	3	2
			60 100	3	2	2 3	2 3	3 3	2	1 3	3 3
ACETIC ANHYDRIDE	(CH ₃ CO) ₂ O	100	25	3	2	1	3	3	3	2	1
	(011300)20	100	60	3	2	2	3	3	Ū	-	
			100			3	3				3
ACETONE	CH ₃ COCH ₃	10	25	3	1	1	1	3	3	1	3
			60 100	3		3 3	1	3 3		3 3	3 3
		100	25	3	2	1	2	3	3	1	3
		100	60	3	2	3	3	3	3	3	3
			100			3	3	3		3	3
CETOPHENONE C	$CH_{3}COC_{6}H_{5}$	nd	25			1	1		3	1	
			60 100			3	1				
ACRYLONITRILE	CH ₂ CHCN te	echnically pure	25		1	1	2		3	2	
	2	, , , , , , , , , , , , , , , , , , , ,	60	3	1	1	3				2
			100				3				
ADIPIC ACID - AQUEOUS SOLUTION	(CH ₂ CH ₂ CO ₂ H) ₂	sat.	25 60	1	1	1		1	1	1	1
- AQUEUUS SULUTIUN	1		100	2	I	1			I		
ALLYL ALCOHOL	CH,CHCH,OH	96	25	2	1	1	1	1			2
	2 2		60	3	2	1					
			100			1					3
	$AI_{2}(SO_{4})_{3}K_{2}SO_{4}nH_{2}O$	dil	25	1	1	1			1		1
- AQUEOUS SOLUTION			60 100	2	1	1					
	$\overline{AI_2(SO_4)_3}$ K ₂ SO ₄ nH ₂ O	sat	25		1	1	1		1		
			60	2	1	1					
			100								
	AICI ₃	all	25	1	1		1	1	1	1	1
- CHLORIDE			60 100	1	1		1	1	2		
- FLUORIDE	AIF3	100	25	1	1		1	1	1		
			60	1	1		1				
			100								
- HYDROXIDE	AI(OH ₄) ₃	all	25	1			1	1		1	1
			60 100	1			1				
- NITRATE	AI(NO ₂) ₃	nd	25	1			1	1		1	1
			60	1			1				
			100								6*
- SULPHATE	AI(SO ₄) ₃	deb	25	1	1	1	1	1	1	1	1 Vr
			60	1	1	1	1		1	IP PI	
		sat	100 25	1	1	1	1	1	1 (sroup Pr scont.au	1
		Sat	20 60	1	1	1	1	1	ouse	con 1	1
			100	•		2	1	1 0	noine	· A2'	1

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigatir

MMBH

r i a l S 🕨 m t e a

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
AMMONIA	NH ₃	deb	25	1	1	1	1	1		1	1
- AQUEOUS SOLUTION	J		60	2	1		1				
			100	4		4		4		4	
		sat	25 60	1 2		1	1 1	1		1	
			100	2			I				
- DRY GAS		100	25	1	1	1	1	1	1	1	1
Bitti ano		100	60	1	1	1	1	1	2	2	
			100								
- LIQUID		100	25	2	1	1	1		1	1	3
			60	3	1	1	1				3
	011 00 00111		100			4					
AMMONIUM	CH ₃ COONH ₄	sat	25	0	1	1	1		1 2	1	1
- ACETATE			60 100	2	I	1	1 1		2		1
- CARBONATE	$(NH_4)_2CO_3$	all	25	1	1	1	1	1	3	1	1
or and of an a	(1114)2003	un	60	2	1	1	1	•	Ū		•
			100	-	•	·	•				
- CHLORIDE	NH₄CI	sat	25	1	1	1	1	1	1	1	1
	•		60	1	1	1	1	1	1		1
			100			2	1	1			1
- FLUORIDE	NH ₄ F	25	25	1	1	1	1	1			1
			60	2	1	1	1	1			0
- HYDROXIDE		28	100 25		1	1	<u>3</u> 1		1	1	3
	NH ₄ OH	Zõ	25 60	2	1	1	1		1	I	I
			100	2	1	1	ļ				
- NITRATE	NH ₄ NO ₃	sat	25	1	1	1	1	1	1		1
		out	60	1	1	1	1	1	2		1
			100			1	1	1			1
- PHOSPHATE DIBASIO	$\overline{\mathrm{NH}_4(\mathrm{HPO}_4)_2}$	all	25	1	1	1	1	1	1		1
			60	1	1	1	1		2		
		. 11	100				1	2			
- PHOSPHATE META	$(NH_4)_4 P_4 O_{12}$	all	25 60	1		1	1	1		1	1
			100	1		1	1				
- PHOSPHATE TRI	$\overline{(NH_4)_2}HPO_4$	all	25	1		1	1	1	1	1	1
	$(101_4)_2 (110_4)$	un	60	1		1	1	1	2	1	
			100			·			-		
- PERSULPHATE	$(NH_4)_2 S_2 O_8$	all	25	1		1	1	1		1	1
			60	1			1				
			100								
- SULPHIDE	$(NH_4)_2S$	deb	25	1	1	1	1	1	1	1	1
			60	2	1	1	1		1		
		oot	100 25	1	1	4	1	1	4	1	
		sat	25 60	1	1	1	1		1	I	
			100	1	I	I	I		1		
- SULPHYDRATE	NH ₄ OHSO ₄	dil	25	1	1	1	1	1			1
	4 - 4		60	2	1	1	1				1
			100								
		sat	25	1	1	1	1	1			1
			60	1	1	1	1				1
		100	100	0	4	0	4	0	0	0	
AMYLACETATE	$CH_3CO_2CH_2(CH_2)_3CH_3$	100	25	3	1	2	1	3 3	3	3	3
			60 100	3	2		2 2	3		3 3	3 3
AMYLALCOHOL	CH ₃ (CH ₂) ₃ CH ₂ OH	nd	25	1	1	1	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>
	5H3(0H2/30H20H	nu	60	2	1	1	1	1	2		1
			100	-		1	1	1	L.		1
ANILINE	C ₆ H ₅ NH ₂	all	25	3	2	1	1	3	3	1	1
	0 0 2		60	3	2	1	2	3	3		pt
			100				3	3			JPi
- CHLORHYDRATE	C ₆ H ₅ NH ₂ HCI	nd	25	2	2	2	1	3		Gro	n.8Y
ONEORITE			60	3	2	2		3			

e r i

t

1 s

a

Chemical	Formula	Conc. (%) Te	mp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
ANTIMONY	SbCl ₃	100	25	1	1	1		1			1
- TRICHLORIDE	3		60	1	1	1					
			100								
		suspension	25	1	1	1	1	1		1	1
SULPHONIC ACID			60 100	2		1					
AQUA REGIA	HC+HNO ₃	100	25	2	3	3	2	2			2
		100	60	2	3	3	2	2			2
			100	-	Ū	3		2			
ARSENIC ACID	H ₃ AsO₄	deb	25	1	1	1	1	1		1	1
	5 4		60	2	1	1	1			1	1
			100				1	2		1	1
		80	25	1	1	1	1	1	1	1	1
			60	2	1	1	1	2	1	1	1
		-11	100			2	1	2	3	1	<u>1</u> 1
	Baco.	all	25	1	1	1	1	1		1	I
- CARBONATE	BaCO ₃		60 100	1	1	1	1				
- CHLORIDE	BaCl ₂	10	25	1	1	1	1	1	1	1	
ONEONIDE	Daol ₂	10	60	1	1	1	1	1		1	
			100	•			•			•	
- HYDROXIDE	Ba(OH) ₂	all	25	1	1	1	1	1	1	1	1
	. /2		60	1	1	1	2		1		
			100								
- SULPHATE	BaSO ₄	nb	25	1	1	1	1	1		1	1
			60	1	1	1	1				
	D 0		100								
- SULPHIDE	BaS	sat	25	1		1	1	1		1	
			60 100	1			1				
BEER		comm	25	1	1		1	1	1	1	1
DELI		Comm	60	1	1		1	ļ	i	1	
			100				•				
BENZALDEHYDE	C ₆ H ₅ CHO	nd	25	3	2	3	1		3	1	3
	0 0		60	3	2	3	2		3	1	3
			100								
BENZENE	C_6H_6	100	25	3	3	3	1	3	3	3	1
			60	3	3	3	2	3	3	3	
		00/00	100			3		3		3	2
- + LIGROIN		20/80	25	3		3		3		3	
			60 100	3		3		3		3	
- MONOCHLORINE	C ₆ H ₅ CI	technically pure	25	3	2	1	1				
	0 ₆ ⊓ ₅ 01	lecinically pure	60	3	2	I	1				
			100								
BENZOIC ACID	C ₆ H ₅ COOH	sat	25	1	1	1	1	1	3	1	1
	0 0		60	2	1	1	1	2			1
			100			3	1			3	1
BENZYL ALCOHOL	C ₆ H₅CH₂OH	100	25		1	1	1	1	3	1	2
			60		2	2	1				
			100							-	
BLEACHING LYE	NaOCI+NaCI	12.50%	25	1	2	2	1	1		2	1
		CI	60	2	2		1				
BORIC ACID	H BO	deb	100 25	1	1		1	1	1	4	
	H ₃ BO ₃	uen	25 60	1 2	1	1	1	1	1	1	I
			100	2	1	1	1	1		1	
		sat	25	1	1	1	1	1	1	1	1
		out	60	2	1	1	1			1	
			100			1	1			1	2
BRINE		comm	25	1		1	1	1		1	1 LEO
			60	1			1	1		Pt	K
			100							-OUP	
BROMIC ACID	HBrO ₃	10	25	1	1		1	1		con_1^{-3}	
			60	1	1		1	1	use	c0'1	
			100				1	1 0	JUN IDE		

m

a

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigati

WWPH

PE Pipe Systems PE Pipe System

i a l s 🕨 m t a e r

Chemical	Formula	Conc. (%) T	emp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
BROMINE	Br ₂	100	25	3	3	3	1	3	3	3	1
- LIQUID			60	3	3	3	1	3		3	1
			100			3	1	3		3	1
- VAPOURS		low	25	2	3	3	1	2	3		1
			60		3	3	1				1
BUTADIENE	<u>с н</u>	100	100 25	1		1	1	1	0	2	1
BUIADIENE	C_4H_6	100	25 60	1	3	3	1	I	3 3	Z	1
			100	1	3	3	1		3		
BUTANEDIOL	CH3CH2CH0HCH2OH	10	25	1		1	1		1		1
AQUEOUS	Ull3 Ull2 UllUll0 ll2 Ull	10	60	3		1	1		1		
			100	0							
	C	oncentrated	25	2	2	2	1				1
	Ŭ	onoonnatou	60	3	3	2	1				
			100	J	Ū	-	•				
BUTANE	C ₄ H ₁₀	10	25	1	1	1	1	1	1		1
GAS	4. 10		60		1		1				-
			100		-						
BUTYL	CH ₃ CO ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	100	25	3	3	2	1	3	3	3	2
- ACETATE	3 2 2 2 2 3		60	3	3	3	1	3		3	_
			100			3	2	3		3	3
- ALCOHOL	C₄H₀OH		25	1	1	1	1	1	1		-
	4 9		60	2	1	1	1		1		
			100			2	2			1	2
- PHENOL	C ₄ H ₉ C ₆ H ₄ OH	100	25	2	3	3	1	1	3		2
	4 9 0 4		60	2	3	3	1				
			100								
BUTYLENE GLYCOL	$C_4H_6(OH)_2$	100	25		1	1	1				1
	4 0 1 2		60	2	1		1				
			100								
UTYRIC ACID C ₂ H ₅ CH	C2H2CH2COOH	20	25	1	1	3	1	1		1	1
	202		60	2	2	3					
			100			3		3			
	C	oncentrated	25	3	3	3	1	3		2	2
			60	3	3	3		3			
			100			3		3			
CALCIUM	Ca(HSO ₃) ₂	nd	25	1	1	1	1	1	1	1	1
- BISULPHITE			60	1	1	1	1				
			100								
- CARBONATE	CaCO ₃	all	25	1	1	1	1	1		1	1
			60	1	1	1	1	1			
			100								
- CHLORATE	CaHCI	nd	25	1	1	1	1	1			1
			60	1	1		1				
			100								
- CHLORIDE	CaCl ₂	all	25	1	1	1	1	1	1	1	1
			60	2	1	1	1		1		1
	0. (01)		100			2	1	· · ·			1
- HYDROXIDE	Ca(OH) ₂	all	25	1		1	1	1	1	1	1
			60	1		1	2		2		
	- (00)		100				2		_		
- HYPOCHLORITE	Ca(OCI) ₂	sat	25		1	1	1		2	1	1
			60	2	1	1	1				
			100				2				
- NITRATE	Ca(NO ₃) ₂	50	25	1	1	1	1	1	1		
			60	1			1	1			
	0.00		100								
- SULPHATE	CaSO ₄	nd	25	1	1	1	1	1		1	1
			60	1	1		1				
A			100					· · ·			
- SULPHIDE	CaS	sat	25	1	2	1	1	1		1	- m
			60	1	2		1				10 Pt
			100							.01	JY .
			0.5	4	6	6				~~~~	22
CAMPHOR OIL		nd	25 60	1	3 3	3 3	1 1			e Gro	n.ay

ter

m

a

a l s

i

Chemical	Formula	Conc. (%) 1	ſemp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
CARBON	CO ₂		25	1	1	1	1	1	1	1	1
- DIOXIDE	002		60	2	1	1	1	1	1	1	1
AQUEOUS SOLUT	ION		100	2	1						
- GAS		100	25	1	1	1	1	1	1	1	1
		100	60	1	1	1	1		1		
			100	1	1	1	1		1		
- DISULPHIDE	CS ₂	100	25	2	2	1	1	3	3	3	1
- DISOLFHIDE	0.0 ₂	100	60	3	2	3	1	3	3	3	
				ა							
MONOVIDE	00	100	100	4	4	3	1	3	3	3	
- MONOXIDE	CO	100	25	1	1	1	1	1		1	1
			60	1	1	1	1				
			100					· ·			<u> </u>
- TETRACHLORIDE	CCI ₄	100	25	2	2	3	1	1	2	3	1
			60	3	3	3	1				
			100								
CARBONIC ACID	H_2CO_3	sat	25	1			1	1			
- AQUEOUS SOLUTI	ON		60	1			1				
			100								
- DRY		100	25	1			1	1			
			60	1			1	1			
			100								
- WET		all	25	1			1	1			
			60	2			1	-			
			100	-							
CARBON OIL		comm	25	1		3	1	1	2	1	1
		Comm	60	1		1	1		2		
			100	I		1	I				
CHLORAMINE		dil	25	1	1	1	1	1		1	1
GHLUKAININE		ali		I	I	I	I	1		I	I
			60								
			100								
CHLORIC ACID	HCIO ₃	20	25	1	1	1	1	1	3	1	1
			60	2	3	3	1			1	
	-		100			3	1			1	3
CHLORINE	Cl ₂	sat	25	2			1	2		3	1
			60	3			1				
			100								
- DRY GAS		10	25	1		3	1	1	3		1
			60	2		3	1				1
			100								
		100	25	2		3	1	1	3		1
			60	3		3	1	1	-		1
			100	-		-		-			
- WET GAS		5g/m ³	25	1		3			3		
		Jy/III	60	3		3			5		
			100	0		0					
		10 g/m ³	25	2		3	1		3		
		10 y/m²							3		
			60	2		3	1				
		00 -13	100	0		0	4		0		
		66 g/m ³	25	2		3	1		3		
			60	2		3	1				
			100	_	_	_			_		
- LIQUID		100	25	3	3	3	1		3	3	1
			60			3	1				
			100								
CHLOROACETIC ACID	CICH ₂ COH	85	25	1	2	1	1		3	2	1
	-		60	2	3	3	1		3		
			100			3	1			3	3
		100	25	1	3		1	3	3		
			60	2	3	3	3	3			
			100	_	2	3	3	3		3	3
CHLOROBENZENE	C ₆ H ₅ Cl	all	25	3		3	1	3	3	3	150
		uii	60	3		3	2	3	3	3 01	Y Ľ
				3		3	2	3	3	3 Pt	
	CHCI		100 25	0	2	0	1	0	0		
CHLOROFORM	CHCI3	all		3	2	2	-	3	3	2013.20 CO131	2
			60	3		3	1	3	.17-	c0'31	
			100			3	1	3	00 0	· 43-	

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigat

WWPH

r i a l s 🕨 m t е a

Chemical	Formula	Conc. (%) 1	ſemp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
CHLOROSULPHONIC	CIHSO3	100	25	2	3	3	2	1	3	3	2
ACID	ů.		60	3	3	3	3			3	
			100			3	3			3	
CHROME ALUM	$\text{KCr}(\text{SO}_4)_2$	nd	25	1	1	1		1		1	1
			60	2	1	1		1			1
			100			2		1			1
CHROMIC ACID	$CrO_3 + H_2O$	10	25	1	2	1	1	1		1	1
			60	2	3	2	1	1			
			100		-	3	3	1			
		30	25	1	2	2	1	1	3	1	1
			60	2	3	3	1	1	3	3	
			100		_	3	2	1	3	3	
		50	25	1	2	2	1	1	3	2	1
			60	2	3	3	1	<u>^</u>			
		50/05/45	100			3	2	2			
CHROMIC SOLUTION	$CrO_3 + H_2O + H_2SO_4$	50/35/15	25	1	3	3					1
			60	2	3	3					1
			100								
CITRIC ACID	$C_{3}H_{4}(OH)(CO_{2}H)_{3}$	50	25	1	1	1	1	1	1	1	1
AQ. SOL. min			60	1	1	1	1	0			
ODDED	CuCl	o o t	100	4	4	1	1	2		1	1
	CuCl ₂	sat	25	1	1	1	1	1		1	1
- CHLORIDE			60	1	1	1	1	1			
OVANIDE	CUCN	all	100	<u></u>		4	1	1			
- CYANIDE	CuCN ₂	all	25	3		1	1	1			
			60	3		1	1				
- FLUORIDE	CuF ₂	all	100 25	1	1	3	1	1			1
- FLOURIDE	GUF ₂	all	25 60	1	1	3	1	I			I
			100	I	1	3	I				
NITDATE	$\overline{C_{U}(NO)}$	nd	25	1	1	1	1	1		1	1
- NITRATE	Cu(NO ₃) ₂	nu	60	2	1	1	1	l.		I	1
			100	2	I	I	I				I
- SULPHATE	CuSO ₄	dil	25	1	1	3	1	1	2	1	1
JULFHAIL	0030 ₄	uii	60	1	1	3	1	1	2	1	1
			100	1	- 1	3	1				
		sat	25	1	1	1	1	1	2	1	1
		Sal	60	1	1	1	1	I	۷	I	1
			100			1	I				1
COTTONSEED OIL		comm	25	1		1	1	1	1	2	1
JULIONSLLD UIL		COMM	60	1		1	1	I	1	2	1
			100	1		1	1				
CRESOL	CH ₃ C ₆ H₄OH	≤90	25	2	1	1	1	2	3	3	1
	31 ₃ 0 ₆ 1 ₄ 011		60	3			1	3	0	3	
			100	0				0		0	
		>90	25	3		2	1	3	3	3	2
		200	60	3		2	1	3	0	3	2
			100	0				U		U	
CRESYLIC ACID	CH ₃ C ₆ H₄COOH	50	25	2			1	1			1
	3 ¹ ₃ ⁶ ¹ ₄ 00011	00	60	3			2		3	2	1
			100	0			-		U	-	
CYCLOHEXANE	C ₆ H ₁₂	all	25	3	1	1	1	3	1	3	1
	6' '12	un	60	3		2	1	3		3	
			100	0		L	2	U		0	
CYCLOHEXANONE	C ₆ H ₁₀ O	all	25	3	1		1	3	2	3	
	5 ₆ . 1 ₁₀	un	60	3		3	2	3	L	3	
			100	0		3	3	3		3	
DECAHYDRONAFTALENE	C.H.	nd	25	1	1	3	1	0		3	1
	10' 18	nu	60	1	2	3	1			3	
			100		2	0	1			0	
DEMINERALIZED WAT	FR	100	25	1	1	1	1	1		1	1
		100	60	1	1	1	1	1		1	ot
			100		1	1	1	1		1 .	NP 1
DEXTRINE	C ₆ H ₁₂ OCH ₂ O	nd	25	1	1	1	1	1	1	- Cro	Tay-
2	5 ⁶ 12 ⁰⁰¹ 2 ⁰	nu	60	2	1	1	1	1	1 .	se or	1
			100	-					· ~	u- , 0 ² ,	1

ter

m

a

i

a l s

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
DIBUTYLPHTALATE	$C_6H_4(CO_2C_4H_9)_2$	100	25	3	3	3	1	3	3	1	2
	0 4 2 4 3 2		60	3		3		3			
			100								
DICHLOROACETIC	Cl ₂ CHCOOH	100	25	1	1	1				1	2
ACID			60 100	2	2	2					3
DICHLOROETHANE	CH,CICH,CI	100	25	3	3	1	1	3			3
DIGITEORIOETHANE	011201011201	100	60	3	3	1	1	0			0
			100	-	-						
DICHLOROETHYLENE	CICH,CI	100	25	3	3	2	1		3	1	1
	-		60	3	3		1				
			100								
DIETHYL ETHER	$C_2H_5OC_2H_5$	100	25	3	3	1	1	3	2		3
			60 100	3	3	1	3	3			3
DIGLYCOLIC ACID	$(CH_2)_2 O(CO_2H)_2$	18	25	1	1	1				1	1
	$(01_2)_2 0 (00_21)_2$	10	60	2	1	1					1
			100	-		·					•
DIMETHYLAMINE	(CH ₃) ₂ NH	100	25	2		1	2		2	3	2
	. 0.2		60	3	2	2	3		3		
			100								
DIOCTYLPHTHALATE		all	25	3	1	2	1	3	2	2	3
			60	3	2	2		3			3
DISTILLED WATER		100	100 25	4	1	1	4	4	1	1	4
DISTILLED WATER		100	25 60	1	1	1	1	1	1	1	1
			100	1	1	1	1	1	1	1	1
DRINKING WATER		100	25	1	1	1	1	1	1	1	1
		100	60	1	1	1	1	1	•	1	1
			100			1	1	1		1	1
ETHERS		all	25	3		3		3	2	2	
			60	3		3		3		3	
		100	100								
ETHYL	$CH_3CO_2C_2H_5$	100	25	3	1	2	2	3	3	1	3
- ACETATE			60 100	3	3	3 3	2	3		3 3	3 3
- ALCOHOL	CH ₃ CH ₂ OH	nd	25	1	1	<u> </u>	<u>3</u> 1	3	1	<u> </u>	<u> </u>
ALCOHOL	01130112011	nu	60	2	2	1	1	1	2	1	1
			100	2	L	1	1		2		1
- CHLORIDE	CH3CH2CI	all	25	3	2	3	1	3	2	1	2
	3 2		60	3		3	1	3			
			100								
- ETHER	CH ₃ CH ₂ OCH ₂ CH ₃	all	25	3		3	1	3	2	2	3
			60	3		3		3		3	3
		400	100					-	-	-	
	CICH ₂ CH ₂ OH	100	25	3			1	3	3	3	
- CHLOROHYDRIN			60 100	3			2	3		3	
- GLYCOL	HOCH,CH,OH	comm	25	1	1	1	<u>3</u> 1	1	1	1	1
	10011 ₂ 011 ₂ 011	COMM	60	2	3	1	1	1	2	1	1
			100	2	0	1			2		
FATTY ACIDS		nd	25	1			1	1			1
			60	1			1	1			
			100								
FERRIC	FeCl ₃	10	25	1		1	1	1	1	1	1
- CHLORIDE			60	2		1	1			1	
			100	4	4	4	4	4	4	4	4
		sat	25 60	1	1	1	1	1	1	1	1
			100	I	1	1	1	1		1	
- NITRATE	Fe(NO ₃) ₃	nd	25	1	1		1	1		-	140
		110	60	1	1		1	1		Pt	Y L
			100								
- SULPHATE	$Fe(SO_4)_3$	nd	25	1	1	1	1	1	1 (310 1.00	1
	4/3		60	1	1		1		suse	c_{0}^{n}	
			100						10 × 0	· · · · ·	

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigati

WWPH

i a l s 🕨 m t a e r

Chemical	Formula	Conc. (%)	ſemp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
ERROUS	FeCl ₂	sat	25	1	1	1	1	1	1	1	
- CHLORIDE	-		60	1	1		1	1			
A			100								
- SULPHATE	FeSO ₄	nd	25	1	1	1	1	1	1	1	
			60	1	1		1				
FERTILIZER		≤10	100 25	1	1	1		1		1	- 1
ENIILIZEN		≤10	60	1	1	1		I		I	1
			100		1	1					
		sat	25	1	1	1		1		1	1
		301	60	1	1	1		1			1
			100								
FLUORINE GAS - DRY	F.	100	25	2	2	3	1		3		
	2		60	3	3	3					
			100								
LUOROSILICIC ACID	H ₂ SiF ₆	32	25	1	1	1	1	1	2	2	1
	2 0		60	1	1	1	1	1	3		
			100				1	1			
ORMALDEHYDE	НСОН		25	1	1	1	1	1	3	1	1
			60	2	1	1	1		3		
			100				1	2			3
ORMIC ACID	НСООН	50	25	1	1	1	1	1	3	1	1
			60	2	1	1	1		3	2	-
		100	100				1	2	ŕ	ŕ	3
		100	25	1	1	1	1	1	2	2	3
			60	3	1	1	1	0	2	2	3
	F		100	4	4	4	1	3		4	3
RUIT PULP AND JUIC	iE	comm	25	1	1	1	1	1		1	1
			60	1		1	1				
		100	100 25	1		1	1	1	1	3	1
JEL OIL		100	60	1		2	1	1	I	5	1
			100			2	I	1			
		comm	25	1		1	1	1	1	3	1
		0011111	60	1	2	2	1	1		0	
			100	•	-	-					
URFUROLE ALCOHO	. C.H.OCH.OH	nd	25	3	2	2			3		1
	532		60	3	2	2					
			100								
GAS EXHAUST		all	25	1			1	1		1	
- ACID			60	1			1				
			100								
- WITH NITROUS VA	POURS	traces	25	1	1	1	1	1	1		1
			60	1	1	1	1				
			100								
GAS PHOSGENE	CICOCI	100	25	1	2	2		1			1
			60	2	2	2		3			
			100								
GELATINE		100	25	1	1	1	1	1	1	1	1
			60	1		1	1				
			100								
GLUCOSE	C ₆ H ₁₂ O ₆	all	25	1	1	1	1	1	1	1	1
			60	2	1	1	1		1		1
			100	4	4	4	4	4	4	4	4
	HOCH ₂ CHOHCH ₂ OH	all	25	1	1	1	1	1	1	1	1
AQ.SOL			60 100	1	1	1	1	1	1		1
LYCOGLUE		10	100 25	4	1	1	1	1	1	1	1
		10		1	-			-	-		1
AQUEOUS			60	1	1	1	1	1	1		
GLYCOLIC ACID		37	100 25	1	1	1	1 1	1			
	HOCH ₂ COOH	31			1	I		1			Pt
			60 100	1	I		1				1040
IEPTANE	C ₇ H ₁₆	100	25	1	1	3	1	1		CTO)	(ay
	0 ₇ n ₁₆	100	25 60	2	3	3	3	1		set of	0.7

ter

m

a

i

a l s

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
HEXANE	C ₆ H ₁₄	100	25	1	1	1	1	1		3	
	0 14		60	2	2	2	1				
	110	-10	100				4		0		
IYDROBROMIC ACID	HBr	≤10	25 60	1 2	1 1	1	1	1	3	1	1
			100	2	1	3	1	2		3	
		48	25	1	1	1	1	1	3	1	1
			60	2	1	1	1				
			100			3	1	2		3	3
HYDROCHLORIC ACID	HCI	≤25	25	1	1	1	1	1	1	1	1
			60	2	1	1	1	1	3	1	1
		≤37	100 25	1	1	1	1 2	2	3 1	3 1	1
		≥07	60	1	2	1	1	1	2	2	1
			100		2	2	1	1	2	3	2
HYDROCYANIC ACID	HCN	deb	25	1	1	1	1		2	1	1
			60	1	1	1	1		3	3	
			100								
IYDROFLUORIC ACID	HF	10	25	1	1	1	1	1		1	1
			60	2	1	1	1	0			0
		60	100 25	0	1	3 1	1	2 1	3	2	2 1
		00	25 60	2 3	1	3	1	1	3	2	I
			100	0		3	1	2	0		2
HYDROGEN	H ₂	all	25			v		-	1		-
	2		60						1		
			100								
YDROGEN	H_2O_2	30	25	1	1	1	1	1	1	1	1
- PEROXIDE			60	1	1	1	1	1			
		50	100	4	1	4	4	1			- 1
		50	25 60	1	2	1 2	1	1			1
			100	I		2		1			
		90	25	1	1	1	1	1	3	2	1
		00	60	1	2	2		1	Ū	-	
			100					1			3
- SULPHIDE DRY		sat	25	1	1	1	1		3	1	1
			60	2	1	1	1		3		
			100								
- SULPHIDE WET		sat	25	1	1	1	1		3	1	1
			60 100	2	1	1	1		3		
HYDROSULPHITE		≤10	25	1		1	1	1		1	1
		210	60	2		1	1				· ·
			100	-							
IYDROXYLAMINE	$(H_2NOH)_2H_2SO_4$	12	25	1	1	1	1		1		
SULPHATE			60	1		1	1		2		
			100								
LLUMINATING GAS		100	25	1	1	1		1	1	1	1
			60								
ODINE	1	3	100 25	2		1	1				
- DRY AND WET	I ₂	3	25 60	3		1	1				
			100	U			1				
- TINCTURE		>3	25	2	2	1	1	1			1
			60	3	3	3	1				
			100								
SOCTANE	C ₈ H ₁₈	100	25	1	2	2	1		1		3
			60			3	1				3
CODDODVI		100	100		0	0	4		0		
SOPROPYL	$(CH_3)_2 CHOCH(CH_3)_2$	100	25	2 3	2	2	1		3	ot	1 2
- ETHER			60 100	3	3	3				UD Y'	3
- ALCOHOL	(CH ₃) ₂ CHOH	100	25			1	1		(rov'au	1
ALCOHOL	(313)2011011	100	60	2		1			, se	com.1	1
			100	-		•			- 0V- 0	~ 11	·

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigat

MMBH

PE Pipe Systems PE Pipe System

erials> m a t

Chemical	Formula	Conc. (%)	,	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
ACTIC ACID	СН₃СНОНСООН	≤28	25	1	1	1	1	1	1	1	1
			60	2	1	1	2				1
ANOLINE		nd	100 25		1	1 1	2		1		<u>1</u> 1
ANULINE		nd	25 60	2	1	2			1		1
			100	2	1	2			1		
EAD ACETATE	Pb(CH ₃ COO) ₂	sat	25	1	1	1	1	1	1	1	1
	372		60	1		2	1	1	1		1
			100			2	1	1			1
INSEED OIL		comm	25	1	_	1	1	1	1	1	1
			60	2	2	1	1		1		1
UBRICATING OILS		00mm	100 25	1	3	1	1	1	1	3	1
		comm	60	1	3	2	1	I	1	3	1
			100	1		2	1				
AGNESIUM	MgCO ₃	all	25	1		1	1	1		1	1
- CARBONATE	53		60	1		1	1				
			100								
- CHLORIDE	MgCl ₂	sat	25	1	1	1	1	1		1	1
			60	1	1	1	1	1			
	M. (01)		100			2	1	1			
- HYDROXIDE	Mg(OH) ₂	all	25	1		1	1	1	1	1	1
			60	1		1	1				
- NITRATE	MgNO ₃	nd	100 25	1	1	1	1	1		1	1
	wigivo ₃	nu	60	1	1	1	1	I		I	I
			100		•		•				
- SULPHATE	MgSO ₄	dil	25	1	1	1	1	1	1	1	1
			60	1	1	1	1	1		-	-
			100								
		sat	25	1	1	1	1	1		1	1
			60	1	1	1	1	1			
	00011011000011		100			4					
ALEIC ACID	СООНСНСНСООН	nd	25	1	1	1	1	1	2	2	1
			60 100	1	1	1 1	1	0			1
IALIC ACID	CH ₂ CHOH(COOH) ₂	nd	25	1	1	1	1	2	1	3	1
	0112011011(00011)2	nu	60	1	1	1	1	I	1	0	,
			100			•	•				
MERCURIC	HgCl,	sat	25	1	1	1	1	1	1		
- CHLORIDE	0 2		60	1	1	1	1				
			100								
- CYANIDE	HgCN ₂	all	25	1		1	1	1			
			60	1		1	1				
			100		-	4		,			
MERCUROUS NITRAT	E HGNU ₃	nd	25	1	1	1	1	1			
			60 100	1	1	1	1				
IERCURY	Нд	100	100 25	1	1	1	1	1	1	1	1
	ny	100	25 60	2	1	1	1	I	I	I	I
			100	2			1				
NETHYL	CH ₃ COOCH ₃	100	25			1	1		3	2	
- ACETATE	3 3		60			1				3	
			100								
- ALCOHOL	CH ₃ OH	nd	25	1	1	1	1	1	1	1	2
			60	1	1	2	1				2
			100		<u> </u>	2	1				2
- BROMIDE	CH ₃ Br	100	25	3	3	3	1				1
			60			3	1				
- CHLORIDE	CH ₃ CI	100	100 25	3	1	3	1	2	3	2	0
	01301	100	25 60	3	I	3	1	۷	3	۷	2 Pt
			100	5		3	1	3			JP T
- ETHYLKETONE	CH ₃ COCH ₂ CH ₃	all	25	3	1	1	2	0	3	Gro	.33
	5H3000H20H3	un	60	3	2	2	3		3	se or	13

e r i

1 s

a

Chemical	Formula	Conc. (%)	Femp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
METHYLAMINE	CH ₃ NH ₂	32	25	2	1	1	2				1
	3 2		60	3	2						
		100	100								
	CH_2CI_2	100	25	3	3	3	1	3			2
CHLORIDE			60 100	3		3 3	2 3	3 3			
METHYL	CH ₃ COOSO ₄	50	25	1	2	2	1	1		1	1
SULPHORIC ACID	0.1.3000004		60	2	2	2	1			•	
			100			3	2			3	3
		100	25	1	3	3		1		1	2
			60	2	3	3					
			100			3				3	3
MILK		100	25	1	1	1	1	1	1	1	1
			60	1		1	1	1			
MINERAL ACIDOUL	0116	nd	100 25	1	1	<u>1</u> 1	<u>1</u> 1	<u>1</u>	1	1	1
WINERAL ACIDOUL	003	nu	60	1	1	1	1	1	1	1	1
WAILN			100	1	I	1	1	1		1	1
MOLASSES		comm	25	1	1	1	1	1		1	1
			60	2	2	1	1				
			100			2	1	2			2
NAPHTA		100	25	2	2	1	1	1	1	3	1
			60	3	3	3	1				1
			100								
IAPHTALINE		100	25	1	1	3	1	2	3	3	1
			60		2	3	1				
			100			3	1	3			
NICKEL	NiCl3	all	25	1	1	1	1	1	1	1	
- CHLORIDE			60	1	1	1	1	1			
		nd	100 25	4	1	1	1	<u>1</u>		4	1
- NITRATE	Ni(NO ₃) ₂	nd	25 60	1	1	1	1	I		1	I
			100	I	I	2	1				
- SULPHATE	NiSO4	dil	25	1	1	1	1	1	1	1	1
OOLITIMIL		un	60	1	2	1	1			•	
			100	·	-	•	•				
		sat	25	1	1	1	1	1		1	1
			60	1	1	1	1			1	
			100								
IITRIC ACID	HNO ₃	anhydrous	25	3		3	2	3			1
	-		60	3		3	3	3			
			100			3	3	3			3
		20	25	1	1	1	1	1		1	1
			60	2	2	2	1	1		0	1
		40	100	4		3	1	1		2	1
		40	25 60	1	0	2	1	1		1	1
			100	I	2	3 3	1	1		3	3
		60	25	1	3	2	1	1		3	2
		00	60	2	3	3	1	1		3	3
			100	L	0	3	1	1		3	3
		98	25	3	3	3	1	3		3	3
			60	3	3	3	1	3		3	3
			100			3	2	3		3	3
NITROBENZENE	C ₆ H ₅ NO ₂	all	25	3		1	1	3	2	3	2
	L		60	3	2	2	1	3		3	3
			100								
DLEIC ACID	C ₈ H ₁₇ CHCH(CH ₂) ₇ CO ₂ H	l comm	25	1		1	1	1	1	2	1
			60	1	2	2	1				
			100								2

m

a

t

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

JOUSE

Irri

PE Pipe Systems PE Pipe System

materials>

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
OLEUM		nd	25	3	3	3	3	3	3	3	1
			60	3	3	3	3	3		3	
			100								
- VAPOURS		low	25	3		3	3	3	3	3	1
			60	3		3	3	3		3	
			100			<u>,</u>	•	<u>^</u>	Â	•	
		hight	25 60	3		3 3	3 3	3	3	3 3	1
			60 100	3		3	3	3		3	
OLIVE OIL		comm	25			1	1		1	2	1
		COITIIII	60	2	3	1	1		1	2	1
			100	2	0		I				
OXALIC ACID	HO ₂ CCO ₂ H	10	25	1	1	1	1	1	2	1	1
			60	2	1	2	1	•	-	1	1
			100			2	2			1	1
		sat	25	1	1	1	1	1	2	1	1
			60	1	1	2	1	1			1
			100			3	3	1			1
OXYGEN	02	all	25	1	1	3	1	1	1	1	1
			60	1	2	3	1	1			
			100								
OZONE	03	nd	25	1	2	3	1	1	3	1	1
			60	2	3	3	2		3		
	011 (011) 0001	10	100	4			-	,	,	<u>^</u>	4
PALMITIC ACID	CH ₃ (CH ₂) ₁₄ COOH	10	25	1		0	1	1	1	2	1
			60	1		3	1				1
		70	100	4			1	1	0		
		70	25 60	1	3	3	1	I	2		1
			100	I	3	3	I		3		I
PARAFFIN		nd	25				1		3		1
		nu	60	2	2	1	1		0		1
			100	2	2		1				
- EMULSION		comm	25	1	2	3	1	1			1
			60	1	2	3	1				
			100								
- 0IL		nd	25	1		1	1				
			60	1		3	1				
			100								
PERCHLORIC ACID		100	25	1	1	1	1	1	3	2	1
			60	2	1	1	1		3		1
			100								
		70	25	1	1	1	1		3	2	1
			60	2	2		1		3		1
		100	100				4	4	<u>^</u>	-	4
PETROL		100	25	1		1	1	1	2	3	1
- REFINED			60		1	3	1				
- UNREFINED		100	100	4		4	4	4	0	0	4
- UNREFINED		100	25	1		1	1	1	2	3	I
			60 100	1		3	1				
PHENOL	C ^e H ² OH	1	100 25	1	1	1	1	1	3	1	1
- AQUEOUS SOLUT			25 60			1	1	I	3	I	1
			100			3	1				1
		≤90	25	2	1	1	1	1	3		1
			60	3	1	3	1	1	0		1
				0							
			100			3	1				1
PHENYL HYDRA7INF	C.H.NHNH.	all	100		2	3	1	3	3		1
PHENYL HYDRAZINE	C ₆ H ₅ NHNH ₂	all	100 25	3	2	2	1	3	3		1 1 2
PHENYL HYDRAZINE	C ₆ H ₅ NHNH ₂	all	100 25 60		2 2	3 2 2		3 3	3		1 1 2
PHENYL HYDRAZINE - CHLORHYDRATE		all	100 25 60 100	3		2	1		3		2
PHENYL HYDRAZINE - CHLORHYDRATE			100 25 60	3 3	2	2 2	1		3		

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigat

MMBH

ter

m

a

i

a l

S

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
PHOSPHORIC	H ₃ PO ₄	≤25	25	1	1	1	1	1	2	1	1
- ACID	3 4		60	2	1	1	1		3	1	1
			100			1	1	2		1	1
		≤50	25	1	1	1	1	1	2	1	1
			60	1	1	1	1		3	1	1
			100			1	1	2		2	1
		≤85	25	1	1	1	1	1	3	1	1
			60	1	2	1	1				
			100			1	1				2
- ANHYDRIDE	$P_{2}O_{5}$	nd	25	1	1	1		1	2	1	1
	2 0		60	2	1	1			3		
			100								
PHOSPHORUS	PCI ₃	100	25	3	1	1	1	3			1
TRICHLORIDE	0		60	3			1	3			
			100								
PHOTOGRAPHIC		comm	25	1			1	1		1	
- DEVELOPER			60	1			1	1			
			100								
- EMULSION		comm	25	1	1		1	1			-
			60	1			1	1			
			100								
PHTHALIC ACID	$C_6H_4(CO_2H)_2$	50	25		1	1	1			1	1
	0 41 2 /2		60	3	1	1	1			1	
			100								
PICRIC ACID	HOC ₆ H ₂ (NO2) ₃	1	25	1	1	1	1		2	1	1
			60	1		•	1		3		1
			100	-			•		•		
		>1	25	3	1	3	1		1	1	1
		<i>,</i> ,	60	3	1	3	1		2	2	1
			100	U		0			L	L	
POTASSIUM	K ₂ CrO ₇	40	25	1	1	1	1	1	1	1	1
- BICHROMATE	N20107	10	60	1			1	1	3		
DIOITIONIALE			100				I.		0		
- BORATE	K ₃ BO ₃	sat	25	1		1	1				1
DUITAL	N ₃ DO ₃	301	60	2		1	1				
			100	2		1	I				
- BROMATE	KBrO ₃	nd	25	1		1	1	1		1	1
	KDIU ₃	nu	60	2		1	1	I		I	1
				2							
DDOMIDE	KBr	aat	100 25	4	4	2	1				<u>1</u> 1
- BROMIDE	KDI	sat		1	1	-	1				I
			60	1	1	1	1				
OADDONIATE	14.00		100								
- CARBONATE	K ₂ CO ₃	sat	25	1	1	1	1		1		1
			60	1	1		2		1		
	1/01		100								
- CHLORIDE	KCI	sat	25	1	1	1	1	1	1	2	1
			60	1	1	1	1		1		1
011001	1/0.0		100			2	1	,			1
- CHROMATE	KCrO ₄	40	25	1	1	1	1	1		1	1
			60	1	1	1	1				
			100								
- CYANIDE	KCN	sat	25	1	1	1	1		1		1
			60	1	1	1	2		1		
			100								
- FERROCYANIDE	$K_4Fe(CN)_6.3H_2O$	100	25	1	1	1	1	1		1	1
			60	1	1	1	1				1
			100			2	1				1
- FLUORIDE	KF	sat	25		1	1	1				
			60		1	1	1				
			100								٨
	КОН	≤60	25	1	1	1	2	1	2	1	, LO
- HYDROXIDE			60	2	1	1	2	1	2 3	Pt	N I
- HYDROXIDE											
- HYDROXIDE						1	3				
	KNO.	sat	100		1	1	3	1			1
- HYDROXIDE - NITRATE	KNO ₃	sat		1	1	1 1 1	3 1 1		1 (USE		

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigati

WWPH

i a l S 🕨 m t a e r

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
- PERBORATE	KBO3	all	25	1		1	1	1		1	1
	0		60	1			1				
			100								
- PERMANGANATE	KMnO ₄	10	25	1	1	1	1	1		1	1
			60	1	1	2	1				
	K 0 0		100								
- PERSULPHATE	K ₂ S ₂ O ₈	nd	25	1	1	1	1	1		1	1
			60	2	1	1	1				
	V 00	1	100			4	4		4	0	
- SULPHATE	K ₂ SO ₄	sat	25	4		1	1		1	2	1
			60	1	1	1	1			3	
DODANE	0.11	100	100 25	- 1						- 1	- 1
PROPANE	C ₃ H ₈	100	25 60	1	1	1	1	1	1	1	1
- GAS							1				
- LIQUID		100	100 25	1	2	2	1	1	1	3	1
		100	25 60	I	2	2	1	I		3	1
			100				I				
PROPYL ALCOHOL	C ₃ H ₇ OH	100	25	1	1	1	1	1	2	1	1
NOP TE ALCOHOL	0 ₃ 11 ₇ 011	100	60	2	1	1	1	1	2	1	1
			100	2		1					
PYRIDINE	CH(CHCH) ₂ N	nd	25	3	1	2	1	3	3	3	3
	Shi(Shori) ₂ N	nu	25 60	3	2	2	3	3	0	3	3
			100	J	2	2	J	0		0	5
RAIN WATER		100	25	1	1	1	1	1	1	1	1
		100	60	1	1	1	1	1	1	1	1
			100			1	1	1		1	1
SEA WATER		100	25	1	1	1	1	1	2	1	1
		100	60	1	1	1	1	1	L	1	1
			100	1	1	1	1	1		1	1
LICIC ACID	H ₂ SiO ₃	all	25	1	1	1	1	1		1	1
	1120103	un	60	1	1	1	1			1	
			100	•	•						
SILICONE OIL		nd	25	1	1	1			1	1	1
			60	3	2	1			•	-	
			100	U	-						
SILVER	AgCN	all	25	1		1	1	1	1		1
- CYANIDE			60	1		1	1		-		
0.1.1.52			100	-		•	•				
- NITRATE	AgNO ₉	nd	25	1	1	1	1	1		1	1
			60	2	1	1	1	1		-	-
			100	_	•	2	1	1			2
- PLATING SOLUTIO	N	comm	25	1			1	1		1	
			60	1			-				
			100								
SOAP		high	25	1		1	1	1	1	1	1
- AQUEOUS SOLUTI	ON	5	60	2			1				
			100								
SODIC LYE		≤60	25	1		1		1		1	1
			60	1				1			
			100								
SODIUM	CH ₃ COONa	100	25	1	1	1	1	1		1	
- ACETATE	3		60	1	1	1	1	1			
			100			1	1	1			
- BICARBONATE	NaHCO ₃	nd	25	1	1	1	1	1	1	1	1
	J		60	1	1	1	1	1	1		
			100			1	1	1	1		
- BISULPHITE	NaHSO ₃	100	25	1	1	1	1	1	2	1	1
_	- 3		60	1	1	1	1	1	3		
			100			2	1	1	-		
- BROMIDE	NaBr	sat	25	1		1	1	1	1	1	1
			60	1		1	1		3		pt
			100				•			~1	191
- CARBONATE	Na ₂ CO ₃	sat	25	1	1	1	1	1	1	Gro	~. 3Y
, .		041	60	1	1	1	2			se or	1

e r

t

m

a

i

a l s

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
- CHLORATE	NaCIO ₃	nd	25	1	1	1	1	1	1	1	1
	U U		60	2	1		1		2		1
	NEOL		100								
- CHLORIDE	NaCl	dil	25 60	1 2	1	1	1	1	1	1	1
			100	Z	I	I	I		I		
		sat	25	1	1	1	1	1	1	1	1
		501	60	1	1	1	1	1	1		
			100			3	1	1			
- CYANIDE	NaCN	all	25	1		1	1	1		1	
			60	1		1	1				
			100								
- FERROCYANIDE	Na ₄ Fe(CN) ₆	sat	25	1	1			1		3	3
			60	1	1						
- FLUORIDE	NaF	all	100 25	4	4		1	1	1		
- FLUURIDE	Naf	all	25 60	1 1	1		1 2	I	1 2		
			100	1	I		3		2		
- HYDROXIDE	NaOH	60	25	1	1	1	2	1	1	1	1
IIIDIIONIDE	Muon	00	60	1	1	1	2	1	3		
			100	·		1	3	1	Ū		3
- HYPOCHLORITE	NaOCI	deb	25	1	1	1	1	1	2	1	1
			60	2		2	1				
			100								
- HYPOSULPHITE	$Na_2S_3O_3$	nd	25	1		1	1	1			
			60	1			1				
			100				4				
- NITRATE	NaNO ₃	nd	25	1	1	1	1	1	1	1	1
			60 100	1	1	1	1		1		
- PERBORATE	NaBO ₃ H ₂ O	all	25	1		1	1	1	1	1	1
TENDONALE	Nabo ₃ H ₂ O	an	60	1		1	1	1	1	1	
			100	•			•				
- PHOSPHATE di	Na ₂ HPO ₄	all	25	1		1	1	1	1	1	1
	2 4		60	1		1	1	1			
			100			1	1	1			
- PHOSPHATE tri	Na ₃ PO ₄	all	25	1	1	1	1	1	1	1	1
			60	1	1	1	1	1	1		
			100			1	1	1	1		
- SULPHATE	Na ₂ SO ₄	dil	25	1		1	1	1	1	1	1
			60	1		1	1				
		oot	100	4	4	- 1	- 1	- 1	1	4	1
		sat	25 60	1	1	1	1	1	I	1	I
			100	1	I	1	I				
- SULPHIDE	Na ₂ S	dil	25	1	1	1	2	1		1	1
	2-		60	2	1	1	2	·		·	
			100		•		-				
		sat	25	1	1	1	2	1		1	1
			60	1	1	1	2				1
			100								
- SULPHITE	NaSO ₃	sat	25	1		1	1	1	1	1	1
			60	1		1	1		2		1
	CaCl		100 25	4	4	4	4	4			
TANNIC CHLORIDE	SnCl ₄	sat	25 60	1 1	1	1	1	1			
			100			1	1	1			
ANNOUS CHLORIDE	SnCl	dil	25	1	1	1	1	1		1	1
	_ 0101 ₂	uil	25 60	1	1	1	1	I			
			100	•	,						2
TEARIC ACID	CH ₃ (CH ₂) ₁₆ CO ₂ H	100	25	1		2	1	1	1		, LFO
	31 2/16 2		60	1	2	2	1	1	2	2 Pt	X 1
			100							UP!	
UGAR SYRUP		high	25	1	1	1	1	1		310, 7.30	1
			60	2	1		1		ause	c0\1	
			100								

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes

Irrigati

WWPH

erials> m a t

Chemical	Formula	Conc. (%)	ſemp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
SULPHUR	S	100	25	1		1	1	1	3	1	
			60	2		1	1				
			100								
- DIOXIDE AQUEOUS	5 SO ₂	sat	25	1	1	1	1	1	3	1	1
			60 100	2					3		
- DIOXIDE DRY		all	25	1	1	1	1	1	1	1	1
DIONIDE DITI		un	60	1	1	1	1				1
			100			3	1				1
- DIOXIDE LIQUID		100	25	2	1				3		1
			60	3	2				3		
			100						<u> </u>		
- TRIOXIDE	SO ₃	100	25	2	3	3			1		2
			60 100	2	3	3					
SULPHURIC ACID	H ₂ SO ₄	≤10	25	1	1	1	1	1	1	1	1
	12004	210	60	1	1	1	1	1	1	1	1
			100	·	·	1	1	1	2	1	1
		≤75	25	1	1	1	1	1	3	1	1
			60	2	2	2	1		3		1
			100	-	-	2	1	2	3	2	1
		≤90	25	1	2	1	1	1	1	1	1
			60	2	2	2 3	1	0			1
		≤96	100 25	2	2	3	1	3 1		2	1
		≥90	60	3	2	3	2	3		3	1
			100	0	2	3	3	3		3	
- FUMING		all	25	2		3	3			3	1
			60	3		3	3			3	
			100			3	3			3	
- NITRIC AQUEOUS	H_2SO_4 +HNO_3+ H_2O	48/49/3	25	1	3	3					1
SOLUTION			60	2	3	3					1
			100	0	0	3					1
		50/50/0	25 60	2 3	3 3	3 3	1				1
			100	5	3	3	1				1
		10/20/70	25	1	2	2					1
		10/20/10	60	1	2	2					
			100								
ALLOW EMULSION		comm	25	1	1	1				1	1
			60	1	2	2					
			100								
TANNIC ACID	$C_{14}H_{10}O_{9}$	10	25	1	1		1	1	1	1	1
			60	1	1		1	1			
ARTARIC ACID	HOOC(CHOH),COOH	all	100 25	1	1	1	1	1	1	1	1
		un	60	2	1	1	1		1	2	
			100	_						_	
TETRACHLORO	CHCI, CHCI,	nd	25	3	2	2	1		3		2
	۷ ۷		60	3	3	3	2				
- ETHANE											
- ETHANE			100								
		nd	25	3	2	2					1
- ETHANE	CCl ₂ CCl ₂	nd	25 60	3 3	2 3	2 3					1
- ETHANE - ETHYLENE			25 60 100	3	3	3		1		1	1
- ETHANE - ETHYLENE	CCI ₂ CCI ₂ Pb(C ₂ H ₅) ₄	nd 100	25 60 100 25	3				1		1	1
- ETHANE - ETHYLENE			25 60 100 25 60	3	3	3		1		1	1
- ETHANE - ETHYLENE TETRAETHYLLEAD	Pb(C ₂ H ₅) ₄	100	25 60 100 25 60 100	3 1 2	3 1	3	1		3	1	1
- ETHANE - ETHYLENE TETRAETHYLLEAD	Pb(C ₂ H ₅) ₄		25 60 100 25 60 100 25	3	3	3	-	1 3 3	333		1
- ETHANE - ETHYLENE TETRAETHYLLEAD	Pb(C ₂ H ₅) ₄ C ₄ H ₈ O	100	25 60 100 25 60 100 25 60 100	3 1 2 3 3	3 1 2 3	3 1 2 3	1 2 3	3 3			1
- ETHANE	Pb(C ₂ H ₅) ₄	100	25 60 100 25 60 100 25 60 100 25	3 1 2 3	3	3 1 2	2	3	3		1 2 1
- ETHANE - ETHYLENE TETRAETHYLLEAD	Pb(C ₂ H ₅) ₄ C ₄ H ₈ O	100	25 60 100 25 60 100 25 60 100 25 60	3 1 2 3 3	3 1 2 3	3 1 2 3	2	3 3	3	3	1
- ETHANE - ETHYLENE TETRAETHYLLEAD TETRAHYDROFURAN THIONYL CHLORIDE	Pb(C ₂ H ₅) ₄ C ₄ H ₈ O SOCI ₃	100 all	25 60 100 25 60 100 25 60 100 25 60 100	3 1 2 3 3 3	3 1 2 3 3	3 1 2 3 3 3 3	2	3 3 3 3	3	3	1 2 1
- ETHANE - ETHYLENE TETRAETHYLLEAD	Pb(C ₂ H ₅) ₄ C ₄ H ₈ O	100	25 60 100 25 60 100 25 60 100 25 60	3 1 2 3 3	3 1 2 3	3 1 2 3	2	3 3	3	3	1 2 1

i t r 9

m

a

a 1

S

Chemical	Formula	Conc. (%)	Temp. (°C)	uPVC	PE	PP	PVDF	PVC/C	NBR	EPM	FPM
TOLUENE	C ₆ H ₅ CH ₃	100	25	3	2	2	1	3	3	3	2
	0 5 3		60	3	3	3	1	3	3	3	
			100			3	1	3	3	3	
TRANSFORMER OIL		nd	25	1	1	1				3	1
			60	2	2	2					
	001.00011		100								
TRICHLOROACETIC	CCI₃COOH	≤50	25	1	1	1	2		2	2	3
ACID			60	3	2	1	2				3
TRICHLOROETHYLENE		100	100 25	3	2	3	1	3	3	3	1
INIGHLUNUEINILENE	0120000	100	25 60	3	2	3	1	3	3	3	
			100	3	2	5	1	5		5	
TRIETHANOLAMINE	N(CH ₂ CH ₂ OH) ₂	100	25	2	1	1	3	2	2	2	1
		100	60	3			3	L	L	L	
			100	U			U				
TURPENTINE		100	25	2	2	3			1		1
			60	2	3	3					
			100								
UREA	$CO(NH_2)_2$	≤10	25	1	1	1	1	1			1
AQUEOUS SOLUTION			60	2	1	1	1	2			
			100								
		33	25	1	1	1	1	1			
			60	2	1	1	1				
			100								
URINE		nd	25	1	1	1	1	1		1	1
			60	2	1	1	1				
			100								
URIC ACID	$C_5H_4N_4O_3$	10	25	1				1			
			60	2				2			
VASELINE OIL		100	100 25	4		- 1	- 1			0	
VASELINE UIL		100	25 60	1 3	1 2	1 2	1			3 3	1
			100	3	2	2	I			3	
VINYL ACETATE	CH3CO2CHCH2	100	25	3			1	3		2	1
		100	60	3			I	3		3	1
			100	J				3		3	
WHISKY		comm	25	1		1	1	1	1	1	1
		oonnin	60	1			1				
			100								
WINES		comm	25	1	1	1	1	1	1	1	1
			60	1		1	1	1			
			100				1				
WINE VINEGAR		comm	25	1	1	1	1	1	1	1	1
			60	2	1	1	1	1		1	
			100				1	1		1	
ZINC	ZnCl ₂	dil	25	1	1	1	1	1	1	1	1
- CHLORIDE			60	1	1	1	1				
			100								
		sat	25	1	1	1	1	1		1	1
			60	1	1	1	1				1
			100			2	1				1
- CHROMATE	ZnCrO ₄	nd	25	1		1	1	1		1	
			60	1		1	1				
	7.000	-11	100	4			4	4		4	
- CYANIDE	Zn(CN) ₂	all	25	1			1	1		1	
			60 100	1			1				
- NITRATE	$\overline{7n(NO)}$	nd	25	4		1	1	1		1	1
	Zn(NO ₃) ₂	na	25 60	1		1	1				1
			100	1		1	I				
- SULPHATE	ZnSO ₄	dil	25	1	1	1	1	1	1	1	, Ltd
JULITAL	21004	uii	60	1	1	1	1				
			100	1	1		1			UP Y	
		sat	25	1	1	1	1	1	(Sroup Pt Sroup au	1
		adt	20						2	- A.	
			60	1	1	1	1		SE	c011	1

Class 1: High Resistance Class 2: Limited Resistance Class 3: No Resistance. Refer page 2.5 for explanation of classes Irrigation, ww

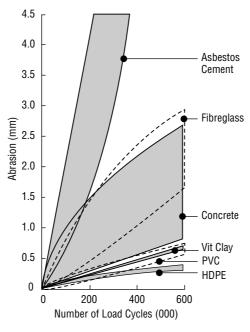
ph

Material Performance Aspects

Abrasion Resistance

The transmission of solids in either liquid or gaseous carriers in PE pipelines results in abrasion of the internal pipe walls, especially at points of high turbulence such as bends or junctions.

The high resistance to abrasion, flexibility, light weight, and robustness of Vinidex PE pipes, have led to their widespread use in applications such as transportation of slurries and mine tailings.


Abrasion occurs as a result of friction between the pipe wall and the transported particles.

The actual amount and rate of abrasion of the pipe wall is determined by a combination of:

- the specific gravity of the solids
- the solids content in the slurry
- solid particle shape, hardness and size
- fluid velocity
- PE pipe material grade

The interaction of these parameters means that any prediction of the rate of abrasion wear can only proceed where testing of wear rates has been performed on the specific slurry under the proposed operational conditions.

Under varying test conditions the relative ranking of different pipe materials may change, and where possible testing should be performed.

Figure 2.2 Comparative Abrasion Rates of Pipe Materials

A comprehensive collection of case history data has been assembled by Vinidex design engineers for particular applications, and this information is available on request.

In general terms, PE pipes have superior abrasion resistance to steel, ductile iron, FRP, asbestos and fibre reinforced cement pipes, providing a more cost effective solution for abrasive slurry installations.

Laboratory test programs have been performed in the UK, Germany and USA to obtain relative wear comparisons for various materials using sliding and rotating pipe surfaces. The results of test programs using the Darmstadt (Germany) method of Kirschmer and reported by Meldt (Hoechst AG) for a slurry of quartz sand/ gravel water with a solids content 46% by volume and a flow velocity of 0.36m/s are shown in Figure 2.2.

These were performed across a range of materials and show the excellent abrasion resistance of PE pipe materials.

Similarly, Boothroyde and Jacobs (BHRA PR 1448) performed closed loop tests using iron ore slurry in a concentration range of 5 to 10% and ranked PE ahead of mild steel and asbestos cement in abrasion resistance.

For most grades, the difference in abrasion resistance between MDPE (PE80B) and HDPE (PE80C and PE100) is not significant. However, Vinidex offers grades which are specifically selected to maximise abrasion resistance, whilst also maximising pressure rating and crack growth resistance.

The design of fittings involving change of flow direction is critical in slurry lines. The lower the rate of change of direction, the lower the abrasion rate. For bends, a large centreline radius must be used. Where possible, a radius of at least 20 times the pipe diameter should be used, along with a long straight lead-in length containing no joints.

In practice, the effective lifetime of the PE pipeline can be increased by using demountable joints to periodically rotate the PE pipe sections to distribute the abrasion wear evenly around the circumference of the pipe.

Weathering

Weathering of plastics occurs by a process of surface degradation, or oxidation, due to a combined effect of ultra violet radiation, increased temperature, and moisture when pipes are stored in exposed locations. All Vinidex PE pipe systems contain antioxidants, stabilisers and pigments to provide protection under Australian

Black PE pipes contain carbon black which act as both a pigment and an ultra violet stabiliser, and these pipes require no additional protection for external storage and use.

construction conditions.

Other colours such as white, blue, yellow or lilac do not possess the same stability as the black pigmented systems and the period of exposure should be limited to one year for optimum retention of properties. With these colour systems the external surface oxidation layers develop at a faster rate than those in carbon black stabilised PE pipes. For exposure periods longer than one year, additional protection such as covering should be adopted.

Permeation

Permeation of PE pipe systems from external sources may occur when the surrounding soils are contaminated. Organic compounds of the non polar, low molecular type are those which permeate most rapidly through the PE pipe walls. Accordingly, where materials such as aliphatic hydrocarbons, chlorinated hydrocarbons and alkylated benzenes are encountered, consideration to impermeable ducting should be given. Where contamination is suspected, soil sampling should be performed and in the case of potable water transmission lines, protection to the PE pipes should be provided where contamination is found.

Food Contact Applications

Where the pipeline system is used for food processing or transport purposes, Vinidex PE pipes can be supplied using PE materials complying with AS 2070 -Plastics for Use in Food Contact Applications. In these applications the advice of Vinidex engineers should be obtained as to the effect of the system on food quality, and the most appropriate jointing systems to prevent detention of the food materials through the pipe system.

Biological Resistance

PE pipes may be subject to damage from biological sources such as ants or rodents. The resistance to attack is determined by the hardness of the PE used, the geometry of the PE surfaces, and the conditions of the installation. Small diameter irrigation applications using LDPE materials may be attacked by ants or termites due to the relatively thin wall sections and the hardness of the LDPE. In these instances the source of the ants should be treated by normal insecticide techniques.

Both MDPE and HDPE material types have a higher hardness value than LDPE, and together with the thicker pipe wall sections used in PE63, PE80, and PE100 applications provide a generally resistant solution. In small diameter pipes, the thin wall sections may be damaged by termites in extreme cases.

However damage often ascribed to termite attack in PE has subsequently been found to be due to other sources of mechanical damage.

PE pipe systems are generally unaffected by biological organisms in both land, and marine applications, and the paraffinic nature of the PE pipe surfaces retards the build up of marine growths in service.

